Learn more
Tutorials
Introductory tutorial for submitting to Challenge focused on aquatics theme: https://github.com/OlssonF/NEON-forecast-challenge-workshop. A webinar version of tutorial
More advanced tutorial for submitting to Challenge focused on terrestrial theme: https://github.com/rqthomas/FluxCourseForecast
Other tutorial materials about ecological forecasting
Research from the Ecological Forecasting Initiative Research Coordination Network.
Ecological Forecasting
Lewis, A., W. Woelmer, H. Wander, D. Howard, J. Smith, R. McClure, M. Lofton, N. Hammond, R. Corrigan, R.Q. Thomas, C.C. Carey. 2022. Increased adoption of best practices in ecological forecasting enables comparisons of forecastability across systems. Ecological Applications 32: e02500 https://doi.org/10.1002/eap.2500
Lewis, A. S. L., Rollinson, C. R., Allyn, A. J., Ashander, J., Brodie, S., Brookson, C. B., et al. (2023). The power of forecasts to advance ecological theory. Methods in Ecology and Evolution, 14(3), 746–756. https://doi.org/10.1111/2041-210X.13955
Manuscripts about the Challenge
Thomas, R. Q., Boettiger, C., Carey, C. C., Dietze, M. C., Johnson, L. R., Kenney, M. A., et al. (2023). The NEON Ecological Forecasting Challenge. Frontiers in Ecology and the Environment, 21(3), 112–113. https://doi.org/10.1002/fee.2616
Thomas, R.Q, R.P. McClure, T.N. Moore, W.M. Woelmer, C. Boettiger, R.J. Figueiredo, R.T. Hensley, C.C. Carey. Near-term forecasts of NEON lakes reveal gradients of environmental predictability across the U.S. Frontiers in Ecology and Environment 21: 220–226. https://doi.org/10.1002/fee.2623
Wheeler, K., M. Dietze, D. LeBauer, J. Peters, A.D. Richardson, R.Q. Thomas, K. Zhu, U. Bhat, S. Munch, R.F Buzbee, M. Chen, B. Goldstein, J.S. Guo, D. Hao, C. Jones, M. Kelly-Fair, H. Liu, C. Malmborg, N. Neupane. D. Pal, A. Ross, V. Shirey, Y. Song, M. Steen, E.A. Vance, W.M. Woelmer, J. Wynne and L. Zachmann. Predicting Spring Phenology in Deciduous Broadleaf Forests: An Open Community Forecast Challenge.
Details about the standards used in the challenge
Dietze, M., R.Q. Thomas, J. Peters, C. Boettiger, A. Shiklomanov, and J. Ashander. 2023. A community convention for ecological forecasting: output files and metadata v1.0. Ecosphere 14: e4686 https://doi.org/10.1002/ecs2.4686
Educational manuscripts
Moore, T.N., R.Q. Thomas, W.M. Woelmer, C.C Carey. 2022. Integrating ecological forecasting into undergraduate ecology curricula with an R Shiny application-based teaching module. Forecasting 4:604-633. https://doi.org/10.3390/forecast4030033
Peters, J. and R.Q. Thomas. 2021. Going Virtual: What We Learned from the Ecological Forecasting Initiative Research Coordination Network Virtual Workshop. Bulletin of the Ecological Society of America 102: e01828 https://doi.org/10.1002/bes2.1828
Willson, A.M., H. Gallo, J.A. Peters, A. Abeyta, N. Bueno Watts, C.C. Carey, T.N. Moore, G. Smies, R.Q. Thomas, W.M. Woelmer, and J.S. McLachlan. 2023. Assessing opportunities and inequities in undergraduate ecological forecasting education. Ecology and Evolution 13: e10001. https://doi.org/10.1002/ece3.10001
Woelmer, W. M., Bradley, L. M., Haber, L. T., Klinges, D. H., Lewis, A. S. L., Mohr, E. J., et al. (2021). Ten simple rules for training yourself in an emerging field. PLOS Computational Biology, 17(10), e1009440. https://doi.org/10.1371/journal.pcbi.1009440
Woelmer, W.M., T.N. Moore, M.E. Lofton, R.Q. Thomas, and C.C. Carey. 2023. Embedding communication concepts in forecasting training increases students’ understanding of ecological uncertainty Ecosphere 14: e4628 https://doi.org/10.1002/ecs2.4628